pY RNA1-s2: A Highly Retina-Enriched Small RNA That Selectively Binds to Matrin 3 (Matr3)
نویسندگان
چکیده
The purpose of this study was to expand our knowledge of small RNAs, which are known to function within protein complexes to modulate the transcriptional output of the cell. Here we describe two previously unrecognized, small RNAs, termed pY RNA1-s1 and pY RNA1-s2 (processed Y RNA1-stem -1 and -2), thereby expanding the list of known small RNAs. pY RNA1-s1 and pY RNA1-s2 were discovered by RNA sequencing and found to be 20-fold more abundant in the retina than in 14 other rat tissues. Retinal expression of pY RNAs is highly conserved, including expression in the human retina, and occurs in all retinal cell layers. Mass spectrometric analysis of pY RNA1-S2 binding proteins in retina indicates that pY RNA1-s2 selectively binds the nuclear matrix protein Matrin 3 (Matr3) and to a lesser degree to hnrpul1 (heterogeneous nuclear ribonucleoprotein U-like protein). In contrast, pY RNA1-s1 does not bind these proteins. Accordingly, the molecular mechanism of action of pY RNA1-s2 is likely be through an action involving Matr3; this 95 kDa protein has two RNA recognition motifs (RRMs) and is implicated in transcription and RNA-editing. The high affinity binding of pY RNA1-s2 to Matr3 is strongly dependent on the sequence of the RNA and both RRMs of Matr3. Related studies also indicate that elements outside of the RRM region contribute to binding specificity and that phosphorylation enhances pY RNA-s2/Matr3 binding. These observations are of significance because they reveal that a previously unrecognized small RNA, pY RNA1-s2, binds selectively to Matr3. Hypothetically, pY RNA1-S2 might act to modulate cellular function through this molecular mechanism. The retinal enrichment of pY RNA1-s2 provides reason to suspect that the pY RNA1-s2/Matr3 interaction could play a role in vision.
منابع مشابه
Matrin 3 Binds and Stabilizes mRNA
Matrin 3 (MATR3) is a highly conserved, inner nuclear matrix protein with two zinc finger domains and two RNA recognition motifs (RRM), whose function is largely unknown. Recently we found MATR3 to be phosphorylated by the protein kinase ATM, which activates the cellular response to double strand breaks in the DNA. Here, we show that MATR3 interacts in an RNA-dependent manner with several prote...
متن کاملIdentification of novel nesprin-1 binding partners and cytoplasmic matrin-3 in processing bodies
Nesprins are highly conserved spectrin repeat-containing scaffold proteins predominantly known to function at the nuclear envelope (NE). However, nesprin isoforms are emerging with localizations and scaffolding functions at sites away from the NE, suggesting their functions are more diverse than originally thought. In this study, we combined nesprin-1 coimmunoprecipitations with mass spectromet...
متن کاملSubcellular Localization of Matrin 3 Containing Mutations Associated with ALS and Distal Myopathy
BACKGROUND Mutations in Matrin 3 [MATR3], an RNA- and DNA-binding protein normally localized to the nucleus, have been linked to amyotrophic lateral sclerosis (ALS) and distal myopathies. In the present study, we have used transient transfection of cultured cell lines to examine the impact of different disease-causing mutations on the localization of Matrin 3 within cells. RESULTS Using CHO a...
متن کاملThe Fate of dsRNA in the Nucleus A p54nrb-Containing Complex Mediates the Nuclear Retention of Promiscuously A-to-I Edited RNAs
How do cells discriminate between selectively edited mRNAs that encode new protein isoforms, and dsRNA-induced, promiscuously edited RNAs that encode nonfunctional, mutant proteins? We have developed a Xenopus oocyte model system which shows that a variety of hyperedited, inosine-containing RNAs are specifically retained in the nucleus. To uncover the mechanism of inosine-induced retention, HeL...
متن کاملNuclear poly(A) binding protein 1 (PABPN1) and Matrin3 interact in muscle cells and regulate RNA processing
The polyadenylate binding protein 1 (PABPN1) is a ubiquitously expressed RNA binding protein vital for multiple steps in RNA metabolism. Although PABPN1 plays a critical role in the regulation of RNA processing, mutation of the gene encoding this ubiquitously expressed RNA binding protein causes a specific form of muscular dystrophy termed oculopharyngeal muscular dystrophy (OPMD). Despite the ...
متن کامل